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6.1 INTRODUCTION 

At its most general level, the purpose of conjoint measurement is to understand 
what sorts of numerical representations exist, if any, for orderings of Cartesian 
products of sets. The problem is ubiquitous: 

1. In physics, one can order pairs consisting of a homogeneous substance and a 
volume by the mass of that volume of the substance - this can be done with a pan 
balance and a set of containers without having numerical measures of either mass or 
volume or, of course, substance. Presumably, if we understand matters correctly, 
we should end up with numerical measures of mass, volume, and density. 

2. In economics, one can order commodity bundles - a listing of amounts of 
various goods - b y  preference. A numerical representation corresponding to 
preference would, on one hand, be a kind of utility measure and, on the other, 
tell something about how different commodities are aggregated by an individual. 

3. In economics, statistics, and psychology, one can order gambles - con- 
sequences assigned to chance events - by riskiness and thereby arrive at a numerical 
scale of risk that shows how the consequences combine with the events to yield 
a measure of risk. 

4. In psychology, one can present one intensity of a pure tone to one ear and 
a different intensity to the other ear, producing an overall sensation of loudness 
that is some composite of the loudnesses perceived by each ear separately. Given a 
subject's ordering by loudness of such pairs, we may study the existence of a 
numerical scale of loudness and of a law for combining loudnesses between the 
ears. 

The problem is one of uncovering both scales of measurement of the factors 
and a law for combining these scales to  form a composite or conjoint scale that 

recovers the qualitative ordering. Often the problem is partially constrained by the 
existence of already known scales, derived in other ways, that should be related 
simply to  those obtained by conjoint methods. For example, in physical measure- 
ment, we anticipate that the conjoint measures of mass and volume should relate 
simply to the usual measures derived from the theory of extensive measurement, 
which is based on the existence of an operation of combination that preserves the 
attribute in question. Such "concatenation" operations are typified by placing 
two masses together on a pan balance or by abutting two rods to form a new rod. 

We shall confine our attention to one particularly simple class of numerical 
representations. Let A and P be sets and 2 a binary relation on A x P. We say 
that the structure ( A  x P, 2)  is decomposable if and only if there exist functions 
@A on A and @p on P into the real numbers and a function F from the real plane 
into the reals such that F(@A, @ p )  represents 2.  To be specific, for all a, b in A 
and p, q in P, 

Another way to describe this is to say that there is a binary operation o on the 
reals such that @, o @ p  represents 2 ,  where, of course, for all real r and s,  the 
following relation between o and F holds: 

r o s  = F(r, s). 

Our attention will be restricted to the decomposable case and the obvious generali- 
mtion of that concept for three or more factors. 

Although this sort of representation seems incredibly general - certainly it 
appears to cover all of the two-factor cases one runs into in physics - there are 
simple, and perhaps interesting, cases not covered by it. For example, suppose 
@A, $ A ,  and @p, $, are functions on A and P, respectively, and 2 is the ordering 
generated on A x P by 

then, except for a few special cases, (A x P, 2 )  is not a decomposable structure. 
Nevertheless, this representation seems interesting because the interaction term 
that is added to the additive part of a representation is itself multiplicatively 
independent. The only relevant work (Fishburn, 1975) makes it clear that it will 
probably be difficult t o  understand what properties of 2 lead to such a represen- 
tation. 

When one already has measures of either the two factors A and P or of one of 
those and of on A x P - this is true of examples 1, 2, and 4 above - then one 
can represent the information given in the problem by means of indifference 
curves. In the physical example, we have measures of mass and of volume, so we 
identify with each substance the locus of mass-volume pairs that can arise. Each 
substance will generate its own curve, and under reasonable assumptions these will 
not intersect. In the psychological example, we have physical measures of the 



intensities presented to the two ears (usually we use the logarithm of intensities - 
the decibel scale), and we plot the loci of intensity pairs that are judged to produce 
equivalent loudness. The problem in these cases is to find a suitable numerical 
representation of the indifference curves. 

The question becomes one of deciding on what we mean by a suitable repre- 
sentation. It appears that the only formal requirement for acceptance of the result 
as a form of measurement is that the representation be nearly unique. Often the 
degree of uniqueness is described in terms of the group (or semigroup) of trans- 
formations that take a representation involving o into another representation based 
on the same o. For example, in the usual theory of mass measurement, the con- 
catenation operation is mapped into + and k is mapped into >, and it is shown 
that only multiplication by a positive constant takes one representation into 
another representation. This corresponds to a change in units. However, when 
o is more complex than + or -, explicitly describing the class of admissible trans- 
formations can be difficult. It seems better simply to say how many values of the 
representation must be specified in order to determine it uniquely. In the case of 
mass, one value is sufficient. Thus, our interest will be in constructing represen- 
tations that become unique when their values are specified at one or a few points. 

The rest of the paper deals with most of what is known about decomposable 
representations. First, both historically and in terms of mathematical simplicity, 
is the additive case: when o is +. This is the most fully understood case and in 
many ways serves as an underpinning to more general ones. Second, we look at 
several results of a nonadditive sort. Third, we examine the problem of relating 
conjoint structures t o  concatenation structures and the way in which this provides 
some better understanding of the interplay of addition and multiplication, which 
is exploited in dimensional analysis. Finally, we look at the, as yet, small literature 
concerned with random variable representations of conjoint structures. 

My main concern is with the key ideas and the general spirit, and so I shall 
slight various points of mathematical nicety. The interested reader will find the 
precise definitions and theorems in the references cited. 

6.2 THE ADDITIVE REPRESENTATION 

6.2.1 THE INFINITE CASE 

Ideally, one would like to know two things: what are necessary and sufficient 
conditions for ( A  x P,>) to have an additive representation, and how does one 
construct the functions $A and $p? We cannot yet answer either question fully. 
When A and P are finite sets, necessary and sufficient conditions are known (see 
section 6.2.2, below), and the representation, whose uniqueness is very difficult to 
characterize, involves finding the solutions to a system of linear inequalities. Al- 
gorithms for doing this are known and, because of the speed of computers, are 

feasible if the sets are not too large. In the infinite case, we know only sufficient 
conditions for the existence of an additive representation, but we have systematic 
procedures to approximate @A and qjP, and they are unique up to specification at 
two points. We take up the infinite case first. 

The axioms are conveniently grouped into three types: 

First-order axioms: necessary conditions. These include at least the following 
three properties, each of whch derives immediately from the intended represen- 
tation by cancellations in the corresponding linear inequalities. 

Transitivity: if (a, p)  k (b, q )  and (b, q) 2 (c, r), then (a, p )  2 (c, r). 
Independence: if (a, p) 5 (b, p), then (a, q )  2 (b, q); if (a, p) 2 (a, q), then 

(b, PI 2 (b9 4). 
Double cancellation1: if (a, x) 2 (f, q)  and (f, p) 2 (b, x) ,  then (a, p) ? (b, q). 

First-order axioms: structural conditions. These are not necessary consequences 
of this representation; rather, they constrain the structures in ways that are thought 
to  be useful. Various requirements of nontrivialness are of this sort. Of more sub- 
stantive interest are axioms that assume the existence of elements where one 
wants them. If - is defined as above, the strongest form of solvability says that one 
can always construct a complete indifference curve passing through any prescribed 
point. That is, given a, b in A and p in P, there exists q in P such that (b, q) - 
(a, p). Similarly, given a in A and p, q in P, there exists b in A such that (b, q )  - 
(a, p). As this is restrictive in many cases, a weaker form of solvability, called 
restricted solvability, is usually invoked: it says, for the first component, that if 
there are 6 and b in A such that (6, q) ?(a, p) 2 (b, q), then b exists in A such 
that (b, q)  - (a, p). A similar statement holds for the second component. 

The primary role played by these solvability conditions is to ensure the existence 
of what amounts to equally spaced elements. The method of finding such a se- 
quence in one coordinate is to balance them off against a pair of elements in the 
other coordinate. Thus, we say that a sequence ai in A ,  where i is in a set I of 
successive integers, is a standard sequence if there are p ,  q in P such that for all 
i, i +  1 i n I ,  

We see that if an additive representation exists, then 

and so the successive intervals of the standard sequences are, indeed, equal. Without 
solvability, there is no reason for any standard sequences to exist. With solvability, 

' If  (a, pi - (h,  q )  is defined to mean (a, pi ? (b ,  q )  and (b,  q )  2 (a, pi ,  then double can- 
cellation for - is called the Thomson condition. 



even restricted solvability, some do exist, and they play a vital role in the con- 
struction of the representation. 

Second-order axioms. The third kind of axiom is again a necessary condition, 
but it is a second-order axiom in the sense of logic. The one usually invoked is 
called an Archimedean axiom.' It simply states that any standard sequence that is 
bounded from above and below is finite. Such second-order axioms are infuriating 
to the empirical scientist because they cannot be tested directly. For this reason, 
it is reassuring to know that the Archimedean axiom is dispensable, provided one is 
willing to accept representations into the nonstandard reals (Narens, 1974a; Skala, 
1975). Put another way, (a, p) T (b, q) maps into $JA(a) + Gp(p)> $ ~ ( b )  + $p(q) 
(> goes into 3, rather than into >). 

The major theorems in the infinite case invoke a mix of first-order necessary and 
structural axioms, together with the Archimedean axiom, to prove the existence of 
functions on A and $Jp on P such that + GP is order-preserving. Moreover, 
if $JL, 4; is another representation, then there are constants a > 0, PA, and 0, such 
that $i =a$A + f l A r & - = ~ $ J p  +OF.  

There is a distinct trade-off between the strength of the necessary axioms one 
needs to invoke and the strength of the structural conditions. For example, Luce 
and Tukey (1964) and Debreu (1960), who used strong topological assumptions, 
invoked weak ordering (transitivity plus connectedness of k), double cancellation, 
nontrivialness, and solvability. Later, following work of Holman (1971) and Luce 
(1966), Krantz e t  a1. (1971) used weak ordering, independence, Thomson condition, 
non-trivialness, and restricted solvability. The trade-off involves weakening solv- 
ability to  restricted solvability and compensating by replacing double cancellation 
with the weaker Thomson condition together with the property of independence. 
Both systems also invoke the Archirnedean property. 

The method of proof is of some interest. Independence means that 2 induces a 
unique weak order on each component; e.g., k A is defined by a kA b iff (a, p) 2 
(b, p) for some p in P, and 2 is defined similarly. Fix a, and po. By solvability, 
define the function n by (ao, n(a)) - (a, po), and by solvability define the operation 
oA on A as the solution to 

In this construction, a. acts like a zero element because n(ao) -p po and 

whence a oA a0 "A a.  It turns out that the set of elements A. of A that are S A a o  
and the restriction of oA and 2 A to that set behave mathematically just like 

' In some axiomatizations, the Archimedean axiom and the solvability condition are combined 
into a somewhat stronger topological axiom called completeness. See Ramsey (1975) for a 
defense of this and Narens and Luce (1975) for an objection to it. In other axiomatizations 
the existence of a countable order-dense subset is postulated. 

length or mass, and the theory of extensive measurement (see Krantz et al., 197 1, 
Chapters 2 and 3) ensures the existence of @A that is additive over oA. This func- 
tion is easily extended to the elements 5 ao.  The methods for approximating it in 
terms of a standard sequence are well known. In particular, if a standard sequence 
ai ,  beginning with ao ,  is constructed relative to po and pl(>po), then we can 
choose #A so that @A(ai) = i. For any a > ao,  and any n ,  find i(n) such that 

which is possible according to  the Archimedean axiom. Thus, 

and so, to within an error of lln, @,(a) = i(n)/n. This means that the construction 
of the conjoint representation is feasible via standard sequences. 

The function Gp can be constructed similarly; however, it is easier merely to  
define it as 

Thus the problem is reduced to  proving that + #p is order-preserving. 
Additive conjoint measurement on three or more factors is a bit simpler. In- 

dependence is generalized to  mean that the ordering induced on any set of factors 
is independent of the common value selected for the complementary factors. No 
analog of double cancellation or Thomson condition is needed because, in the 
presence of the other axioms, these conditions can be derived for any pair of fac- 
tors. So, when there are three or more factors, an additive representation exists if 
the following conditions hold: weak ordering, independence, restricted solvability, 
nontrivialness, and an Archimedean property. 

Another approach, not involving solvability conditions but invoking many can- 
cellation properties, which extends techniques from the finite case to the infinite 
one, can be found in Jaffray (1974). 

6.2.2 THE FINITE CASE 

Data developed using standard sequence techniques are rather more special than an 
ordering of an arbitrary finite A x P, which arises when one runs a straightforward 
factorial design. In the latter case, no solvability properties whatever will be satis- 
fied, and so all one has to  work with are the first-order necessary conditions. These 
include the ones we have listed and any others that can be derived from linear 
inequalities by canceling common terms. One might hope that a finite set of such 
inequalities would suffice, but Scott and Suppes (1958) proved that to be im- 
possible. The number of inequalities necessary and sufficient for additive repre- 
sentation increases with the number of elements in A x P. Scott (1964) and 
Tversky (1964) independently devised a compact way of formulating these 



necessary and sufficient conditions (see Krantz et al., 1971, Chapter 9). This type 
of condition has been generalized to countable and noncountable situations by 
Jaffray (1 974). 

In practice, one simply writes down for each data inequality the corresponding 
numerical linear inequality and then searches for a solution to the resulting system. 
Computer programs for doing this have been developed by Tversky and Zivian 
(1966) and Young (1973), among others. 

Narens (1974b) raised the question of when a nested collection of finite additive 
conjoint structures approaches a countable additive conjoint structure whose 
representation is unique up to interval scales. To get at this, let 2 be an indepen- 
dent weak ordering of A x P. On A, define 

a - b >, c - d iff there exist p, q in P such that (a, p )  +(b, q )  and (c, q )  >(d,  P). 

In terms of this notion, for b >,a we say c, d in A form a trisplit if 

and c -a  >Ad -c. 

If for each pair of elements from each component there is a trisplit, then we say 
the conjoint structure is trisplittable. Narens shows that if each member of the 
nested set is trisplittable, then the above convergence obtains. 

6.2.3 FUNCTIONAL MEASUREMENT 

Anderson and his associates have published extensively on functional measurement, 
which is, in many ways, closely related to conjoint measurement (see Anderson, 
1970, 1971, and 1974, for surveys and bibliographies). There are two key features 
of Anderson's work. First, the data take the form of numbers, usually arising from 
some sort of rating or category method: for example, if the stimulus (a, p) consists 
of sound intensities to the two ears, the subject provides a loudness rating that fits 
into, say, one of seven categories. Second, the data (or, in some cases, some trans- 
formation of them) are assumed to  satisfy some explicit representation. One case 
is the additive representation just discussed, but much more important in 
Anderson's work have been representations of weighted averages. If I understand 
him correctly, these representations are axiomatized by the bisymmetric operations 
of section 6.4.1, below. 

Various techniques, closely allied to analysis of variance methods, are used to 
obtain the scales from the category ratings. These methods have been applied to  a 
wide range of situations, from psychophysics to  impressions of personality obtained 
from verbal descriptions. 

Anderson makes much of the internal consistency he finds when these repre- 
sentations are coupled with category scaling, and he criticizes (Anderson, 1970) 
another method initiated by Stevens (1957, 1975) and widely used in psycho- 
physics. Stevens' magnitude estimation differs from the category methods in that 

the range of possible numerical response is not limited and the subject is asked to 
use the numbers so that they reflect the subjective ratios of stimuli. On the face of 
it, one would not expect the additive or averaging models to be appropriate to  these 
instructions, but certain multiplicative representations might be. Because magnitude 
methods are very easy to use and, at least in psychophysics, are widely useful and 
their detailed properties are becoming better understood (Green and Luce, 1974; 
Marks, 1974; Moskowitz et al., 1974; Stevens, 1971, 1975), they probably should 
be given serious consideration by students of factorial situations. 

Both the category and magnitude methods have, for factorial designs, the 
advantage over the ordering methods in that they provide a numerical scale without 
requiring the solution of systems of linear inequalities. All these methods, of 
course, have the disadvantage, compared with studying axioms individually, of not 
localizing the difficulty when the model fails to fit the data. 

A great deal of controversy exists over the relationship between functional and 
conjoint measurement -see, for example, the criticism of Anderson (1971) by 
Hodges (1973) and Schonemann et aZ. (1973), with a reply by Anderson (1973). 
Roughly, the lines are drawn as follows. Measurement theorists point out that no 
qualitative representation theorems are proved in the functional measurement 
literature, to which the reply is "What good are such theorems?" The answer is, 
first, that direct tests of axioms appear to be more revealing of the failure of a 
representation than is fitting it to factorial data, and, second, that the proofs 
of the theorems suggest ways to construct representations in nonfactorial situ- 
ations. Anderson (1974) points out that his empirical methods go far beyond 
anything found in the conjoint measurement literature. They suggest a substantive 
hypothesis that, if true, is important; this hypothesis holds that particular data 
collection procedures yield the representation directly without further trans- 
formation and that techniques of the analysis of variance can be employed to cope 
with error. Moreover, he and his colleagues have collected far more data than all 
the measurement theorists put together, and these data do not support the additive 
representation that has been so much the focus of conjoint measurement. The 
measurement theorists have had little to say in reply, although they have informally 
criticized specific studies (complaining, for example, that the dynamic ranges used 
in the psychophysical studies are too narrow to  test his methods rigorously). In my 
view, the methods are largely complementary, not competitive. 

6.2.4 UNIFORM SYSTEMS AND INDIFFERENCE CURVES 

In the special, but important, case when there are numerical measures (often 
physical, but not always) on A and P that agree with kA and k p ,  respectively, 
the problem can be recast in terms of indifference curves in the plane. In fact, 
the additive case is equivalent to finding transformations of the two given scales 
so that the indifference curves become straight lines with slopes -1. When one 
has all possible indifference curves in the plane, the theory of webs provides the 



solution (Blaschke and 1301, 1938; Aczkl et al., 1960; Havel, 1966; Rad6, 1960, 
1965). However, in practice, one usually has only a finite amount of information 
about each of a finite number of curves. By reasonable interpolation, one can 
replace this situation by a situation in which one knows a finite number of in- 
difference curves completely. Note that this situation is not exactly like the in- 
finite one, where one develops standard sequences, and it is certainly different from 
the finite factorial one. Levine (1970, 1972) has studied such systems and general- 
izations of them; some of his results are summarized by Krantz et ai. (1971, section 
6.7). Roughly, one constructs from any two given indifference curves F and G 
another curve of the form F- 'G,  and these curves can be transformed into the 
additive form if and only if none of the original curves nor any generated recur- 
sively by forming F-' G intersect. 

Levine (1975a, b) has been developing computer methods, based heavily on the 
group theoretic character of his theorems, to make the search for additive (and 
other) representations practical. He is applying these techniques t o  latent trace 
models for test theory. 

6.3 NONADDITIVE REPRESENTATIONS 

Since even the additive case is far from fully understood, we can anticipate only 
partial results in nonadditive cases. Again, we must distinguish between the in- 
finite and finite situations. As the results in the finite case are quite abstract (see 
section 9.5 of Krantz e l  al., 1971), and since they have not, to my knowledge, 
been applied, I will not summarize them. So we deal with the infinite case. 

Recall that a structure of the form (x ;= ,A , ,  2) is decomposable if and only 
if there are real-valued mappings Gi on Ai and a real-valued function F of n real 
variables such that 

It is monotonically decomposabie if, in addition, F is strictly monotonic in each 
of its arguments. Krantz et al. (1971, section 7.2) give necessary and sufficient 
conditions for the existence of such a monotonically decomposable representa- 
tion: 2 must be a weak ordering, the equivalence classes of A = x ;= ,Ai under 
2 must have a countable order-dense subset (i.e., a countable set B such that 
between any two distinct elements of A there is an element from B), and each 
Ai must be independent of the remaining components in the sense that for each i 

( ~ 1 , .  . . , a i - ~  ,a,Qi+l,  . . . , a n )  2 (a1 , . . . , ~ i - ~ ,  b ,  a i+ l ,  . . - , a n )  

if and only if 

Expressed verbally, the ordering established on Ai is independent of the fmed 
choices on the remaining components. 

This result is less than satisfactory in two ways. It involves an awkward second- 
order axiom, namely, the existence of a countable order-dense subset, and it 
provides no insight into constructing the representation. For the case of two 
components, Narens and Luce (1975) drop the countability requirement, and 
they show how t o  reduce the construction of the representation to that of anon-  
associative concatenation structure. Moreover, they work with a local (not con- 
nected) ordering, which is sometimes useful. In the special case of  a weak ordering, 
their axioms are essentially those of the additive case, minus the Thomson con- 
dition plus density: weak ordering, independence, nontrivialness, solvability, 
density, and an Archirnedean property. Using the same definition of oA as in the 
additive case, they show that ( A ,  k A ,  0,) is a positive concatenation structure 
that is associative only if the Thomson condition holds. Thus, the problem of 
constructing the representation is reduced to that of constructing one for the 
operation oA.  This is by no means generally understood. 

More specialized results of Krantz (1968), Krantz and Tversky (1971) (summa- 
rized in sections 7.3-7.4 of Krantz et  al., 1971), and Falmagne (1973) hold for 
simple polynomial representations. A simple polynomial is defined inductively as 
one for which the variables can be partitioned into two sets such that the given 
polynomial is either the sum or  the product of simple polynomials on the two 
sets. For example, + @2)@3@4 is simple, but @2 + @2@3 + @3 is not. 
One can, in the presence of solvability conditions, work out necessary properties 
that permit distinction among these cases. These properties, which are too com- 
plex to state here, permit one to search for additivity, + G2; multiplicativity, 

and various types of cancellation properties that arise from the distributive 
property ($2 -t $3) = @2 + 4, $9. The models have been worked out in 
detail for n = 3, where the four simple polynomials are 

plus permutations on the indices of the last two. Some applications of these 
methods are described below. 

A general discussion of  polynomial measurement in the finite case is given by 
Tversky (1967a) (see section 9.5 of Krantz et  al., 1971); Richter (1975) has re- 
solved a conjecture on the conditions under which systems of polynomial inequalities 
have a solution. 

6.4 RELATIONS TO OTHER FORMS OF MEASUREMENT 

Conjoint measurement has proved more useful at a theoretical level than at an 
empirical one. It is not that we lack empirical applications - see section 6.5 - but 
that applications of conjoint measurement to theoretical problems have provided 
deeper insight than have the empirical applications. Three applications are described 



in this section, and another has been described in the preceding section - namely, 
a fairly general case where conjoint structures reduce to nonassociative positive 
concatenation structures; our first exarnpie below is its converse. 

6.4.1 CONCATENATION STRUCTURES 

Classical physics exhibits two quite different kinds of binary operations - exten- 
sive ones, such as juxtaposition of rods for length or set theoretic union for mass; 
and intensive ones, such as temperature and density. The former are positive 
in the sense that a 0 b >a, b and also associative, whereas the latter are intern in 
the sense that if a > b, then a > a  0 b > b. If we drop all three special properties, 
we have what are called concatenation structures. 

Assume that the structure ( A ,  k , o )  satisfies the following properties: 

2 is a nontrivial weak order; i.e., for some a,  b in A, a > b. 
Monotonicity:~ k b i f f a o c  k b  o c i f f c o a  k c o b .  
Restricted solvability: if 6 0 c 2 a 2 b 0 c,  then there are b in A such that 

b 0 c - a  (the parallel statement on the right is also true). 
Archimedean property: let standard sequence ai satisfy ai o p  - ai+, o q  or 

p 0 ai - q 0 a,+, for some p and q ,  then every bounded standard sequence is 
finite. 

If ?' on A x A is defined by 

(a, b ) k '  (c, d) i f f a  o b k c  o d ,  

then it can be shown (see Krantz e t  al., 1971, section 6.101) that the conjoint 
structure ( A  x A ,  2 ') satisfies the requirements for weak ordering, independence, 
restricted solvability, the Archimedean property, and nontrivialness. Moreover, 
if we add the important property of bisymmetry, 

(a Ob) 0 ( c o d )  - (a 0 c) 0 (b od) ,  

then 2 ' satisfies double cancellation. In the latter case, we can use the additive 
conjoint representation and prove there is an order-preserving representation 9 
and constants p 0 ,  v 0 ,  X such that 

Additional properties on o place restrictions on the constants: 

I f a o a - a , a s i n  theintensive case,p+ v =  1 and X = 0 .  
If 0 is commutative, i.e., a o b - b 0 a,  then p = v. 
If 0 is associative and commutative, as in the extensive case, p = v = 1 and, with 

no loss of generality, X = 0. 

Narens and Luce (1975) have shown that there is a complementary relation 
between one general class of intensive structures and nonassociative, positive 
concatenation structures with half elements. 

6.4.2 CONDlTlONAL EXPECTED UTILITY 

In an attempt to overcome some of the criticisms of Savage's (1954) important 
axiomatization of subjective expected utility, Luce and Krantz (1971) (see Krantz 
et  al., 1971, Chapter 8) axiomatized a notion of conditional decisions. One may 
think of their formulation as based on an algebra & of events, a family 9 of con- 
ditional decisions that can be written fA,  where A is in & (this suggests that fA is a 
function from A into some set of consequences, which is one interpretation of the 
model), and an ordering 2 of 9 .  One of their key assumptions, and one that has 
been strongly criticized by Balch (1974), Balch and Fishburn (1974), and Fishburn 
(1974) and defended by Krantz and Luce (1974), is that 9 is closed under unions 
of decisions on disjoint events and under restrictions to nonempty subevents. The 
axioms, too complex to restate here, are sufficient to show that a real-valued 
function u exists on 9 that is order-preserving and a probzbility measure P exists 
on &such tha t fo rA,Bin  & w i t h A n B = $ a n d f A , g ,  i n 9 ,  

This is the conditional expected utility property. 
No attempt is made here to outline the proof, but it involves looking at all the 

decisions on triples of mutually disjoint events, showing that these are additive 
conjoint structures, and using the uniqueness theorem for such structures to intro- 
duce the probability measures. To the extent that such structures are of interest 
in decision making (and I think there are good reasons to believe they are consider- 
ably more satisfactory than Savage's system), conjoint measurement has been put 
to important use. 

6.4.3 ALGEBRA OF PHYSICAL QUANTITIES 

Physical measures exhibit two quite different numerical structures; some involve 
an operation that satisfies the axioms of extensive (or more general) concatena- 
tion measurement, and some triples of measures are related by equations of the 
form 

z = xOLyP, 

where some or all of x, y ,  and z are extensive measures. In the latter case, it is 
clear that the ordering induced by z on the structure of (x, y) pairs must satisfy 
the axioms of additive conjoint measurement. So, again, we see that this algebra 
must play a role in a qualitative development of the measurement underpinnings 



of physical measures. The main problems in building such a theory are, first, to 
formulate the qualitative interlock between the extensive and conjoint structures 
and, second, to characterize the exponents a and 0. Krantz et al. (1971, Chapter 
10) have made an attempt to do this, based primarily on the work of Luce (1965). 
An improved version is provided by Narens and Luce (1975), and it is outlined 
here. 

Basically, there are two cases to be considered. Suppose that ( A  x P, 2 )  is a 
conjoint structure satisfying independence and that there is either an operation 
OA on A (or 0, on P) or an operation 0 on A x P. In the former case we assume 
the following distribution condition: 

if (a, p)  - (c, q )  and (b, p) - (d, q), then (a 0 b, P) - (c 0 d, q). 

In the latter case, distribution takes the form 

(4 P) O (b, P) - (cI P) iff (a, Q) O (b. Q) IS. (c, Q). 

This permits us to define 0, by 

aoAb = c if for some p ,  hence for any p ,  (a, p)  o (b, p )  - (c, p), 

and this operation satisfies the first condition. What Narens and Luce prove is that, 
under solvability conditions, if 0, is an extensive operation with an additive 
representation @, , then there is a scale @; on Psuch that @A@; is order-preserving. 
Thus, distributivity coupled with extensiveness forces the conjoint structure to be 
additive. If, in addition, Op exists and is extensive with an additive representation @p, 
then there are constants a, 0 such that I$:$$ is order-presening. 

Because of the uniqueness of additive conjoint measurement, only the value of 
alp is of significance. To characterize its value, one need only state the exchange 
relation between concatenations on the two factors as follows: there are positive 
integers m and n such that for all a in A and p in P, either 

Under these conditions, lalpl= n/m. Such statements are easily derived from the 
representation. 

In addition to laws of exchange, one must also consider cases where there is 
an operation 0 on A x P and 0, on A .  In such cases, the corresponding laws, 
called laws of similitude, take the form either 

2m (a, P) - (2"a, P) 

2m(2na, P) - (a, P). 

Krantz et a/. (1971, section 10.9) show how a family of physical attributes - 
some of which are extensive and some triples of which are related, as above, either 

by laws of exchange or similitude - can be represented, in essence, as a multiplica- 
tive vector space with a finite basis of extensive quantities. This is the model of 
physical measures usually assumed in dimensional analysis. Thus, this theory 
appears to serve as the qualitative basis for physical measurement - at least in the 
classical case. 

But there is still at least one vexing problem: the interplay of measures in 
relativistic and quantum physics. The most striking exception to the distribution 
property is provided by relativistic velocity. Let D = V x  T denote distances 
formed by pairing velocities with times - all qualitative. Let 2 be the usual order- 
ing of distances. Let OD, o v ,  and OT be the usual concatenations of distance, of 
velocity (frames of references), and of times. And let #,, @,, GT be the usual 
numerical measures of distance, velocity, and time. Then, even though (V,  kV, ov) 
is an extensive structure, the representation is: 

where c denotes the velocity of light moving in a vacuum. In this case, o v  does not 
satisfy the distributivity condition. 

Although the velocity formula has been given qualitative expression by Luce and 
Narens (In press), it is not really satisfactory for the construction of the algebra of 
physical quantities. An appropriate analogue to the distributive property is needed. 

In summary, it is evident that the concepts of conjoint measurement are essen- 
tial to a qualitative understanding of the algebra of physical measurement. The 
difficult problem that remains is to establish the qualitative connection between 
the extensive and conjoint structures that fail t o  satisfy distributivity. It is worth 
noting that, when confronted with this problem, physicists retain the multiplicative 
representation of the conjoint structure and abandon the additive representation of 
the extensive one. This is not exactly what one would have anticipated from the 
emphasis placed by philosophers of physics (e.g., Campbell, 1920; Nagel, 196 I )  on 
the additive representation of extensive structures. 

6.4.4 MEANINGFULNESS AND DIMENSIONAL INVARIANCE 

Dimensional analysis works when one both knows all of the relevant variables and 
assumes that the law relating them is dimensionally invariant. Roughly, this means 



that changes in the units of measurement do not alter the mathematical form of 
the law. More exactly, it means that the law is some unknown function of one 
or more products of powers of subsets of the variables, where each of the products 
is dimensionless. The question has long been asked why physical and other scientific 
laws should exhibit this property (see Chapter 10 of Krantz et al., 1971, for a 
detailed discussion). 

Apparently independent of that discussion, another one in the measurement 
literature has concerned which statements, framed entirely in terms of a single 
dimension, can be considered meaningful. For example, it is agreed that it is mean- 
ingful to say that one mass is ten times as heavy as another, but that it is not mean- 
ingful to say that today's temperature is 10% less than yesterday's. The consensus 
(see Pfanzagl, 1971) is that a statement is meaningful if and only if it is invariant 
under the group of transformations describing the uniqueness of the scale. Clearly, 
this criterion is the natural analogue of dimensional invariance when there is only 
one dimension. 

In both cases one can raise the question of what in the underlying qualitative 
structure corresponds to a meaningful statement or to a dimensionally invariant 
one. Recently (Luce, 1976), I have shown that there is a simple answer. Intuitively, 
a relation in a qualitative relational structure is meaningful if it can be expressed 
in terms of the relations that define the structure. This is given formal meaning 
as follows: By an automorphism of the structure one means any one-to-one trans- 
formation of the elements that leaves the defining relations invariant. Another 
relation is then said to be meaningful within a structure if and only if it does not 
further reduce the set of automorphisms, i.e., it is also invariant under the auto- 
morphisms of the structure. It is easy to see that this corresponds exactly to  the 
usual definition of meaningfulness in terms of scales of measurement; i t  is some- 
what more interesting to show in the case of the construction underlying the algebra 
of physical quantities how it corresponds exactly to  dimensional invariance. 

6.5 EMPIRICAL APPLICATIONS 

It is widely felt that there have been fewer applications of conjoint measurement 
to  date than might be expected from the interest in the theory. There are probably 
many reasons: difficulty in understanding how the theory and representations 
relate, doubts about what sort of design is best suited to testing the model and what 
sort is suited to constructing representations, and lack of satisfactory statistical 
procedures. Psychologists, for example, have been slow in fully understanding what 
sorts of data are needed to reject simple algebraic representations. They have long 
recognized that in 2 x 2 factor designs "crossed" data - a violation of indepen- 
dence - reject an additive representation. Indeed, as we have seen, a failure of 
simple factor independence rejects any monotonically decomposable representa- 

tion. Relatively few understand that to test additivity one should look carefully 
into double cancellation, which means at a minimum a 3 x 3 design, or  into multi- 
ple-factor independence when there are more than two factors. Similarly, the 
debates between Hull (1952) and Spence (1956) over the formulation of habit 
strength models amount to choices, based on three factors, between two of the four 
simple polynomials. It is interesting that in all the years of empirical research on 
that problem, it appears that no one conducted an experiment adequate to make 
the choice. One should keep in mind examples such as these, and their waste of 
effort and resources, when dismissing fundamental measurement theory as an 
arcane subject of no empirical value. 

Examples will be presented here of various empirical approaches that rest on 
additive conjoint techniques, either directly or indirectly, and on techniques for 
the simple polynomials. Basically, four approaches have been taken to constructing 
the representation: rescahng of a numerical function, construction of a function 
using standard sequence techniques, scaling using factorial methods, and testing of 
axioms. These three constructions are treated in the next section, and the testing of 
axioms is treated in section 6.5.2. 

6.5.1 CONSTRUCTION OF AN ADDITIVE REPRESENTATION 

Scheffk (1959) (see discussion in Krantz er al., 1971, section 6.5.3; and Aczel, 
1965) provided a mathematical solution to the following problem: given a numeri- 
cal scale @ on A x P, when is there f, Q A ,  and such that 

Explicit expressions for f ,  G A ,  and $P are known. This is true whenever either f 
is given as an explicit mathematical function or it can be approximated numerically. 
An example of the former was discussed by Krantz et al. (1971, section 6.4.2): 
Campbell and Masterson (1969) had fit factorial data with a function that, when 
appropriately transformed, yielded an additive representation. 

In principle, the same techniques can be used on data obtained by category or 
magnitude methods, although in practice (e.g., Anderson, 1974) it seems to be 
more usual to try to fit the data directly to an additive or averaging model. For 
example, Feldman and Baird (1971) performed magnitude estimation first on Loud- 
ness and on brightness separately, finding the usual power functions of physical 
intensity, and then on the two jointly. They attempted to fit the resulting responses 
by a geometric mean and by an averaging model based on the functions for the two 
modalities separately, and the averaging model fit reasonably well. 

Although standard sequences are the major theoretical device in constructing 
additive representations, it seems that only one psychological study has employed 
it. Levelt et al. (1972) used the technique to  study loudness summation over the 
two ears. The stimuli were pairs of intensities of a 1000-Hz tone, with different 



intensities directed at each ear. Two such stimuli would be presented with only a 
short time between them, and the subject was asked either to order them by 
loudness or to modify one of the intensities until a loudness match was achieved. 
I t  was found that an additive representation seemed adequate and that the func- 
tions dL and @R (for the left and right ears) were approximately power functions 
of physical intensity with exponents comparable to  those found using magnitude 
methods. This result is both satisfying and disquieting. It is satisfying because the 
growth of loudness is comparable to that found by other methods and because 
additivity across the ears is so simple. It is disquieting because there are other 
reasons, among them physiological evidence for crossovers between the ears, to 
doubt the additivity of loudness. This is treated further in section 6.7. 

Perhaps the most congenial approach to conjoint measurement for many social 
scientists, especially those heavily influenced by analysis-of-variance designs, is 
the factorial approach. For example, Tversky (1967b) used the method to study 
the expected utility model in which subjects chose between gambles in which a 
desired consequence occurred with some probability and nothing occurred with the 
complementary probability. If the utility of nothing is assumed to  be zero, then if 
c is the consequence and A is the chance event, the subjective expected utility 
hypothesis (SEU) becomes u(c) P(A), which is an additive (under a logarithmic 
transformation) conjoint representation. Tversky's data, derived from work with 
prisoners, involved cigarettes and candy as consequences. Additive solutions, using 
the Tversky and Zivian (1966) program, were found to fit the data well. (For de- 
tails, see Tversky, 1967b, or Krantz et al., 1971, section 9.4.2.) 

The most disturbing aspect of these data, from the point of view of an expected 
utility theorist, is that if one demands that the probability measure be additive 
in the sense that P(A) + ~(2)  = 1, then it is impossible to demand also that the 
utiIity functions obtained from two different procedures, one involving only 
gambles and the other pure consequences, be the same. 

Since 1971, P.E. Green and his associates (Green and Rao, 1971 ; Green, 1974; 
Green and Devita, 1974; and Green and Wind, 1975) have been advocating and 
illustrating the use of the factorial conjoint measurement in various marketing 
contexts. It remains to be seen whether it will prove sufficiently useful to waxant 
general adoption. 

It is perhaps worth noting here that the techniques of Anderson and his students 
(for surveys, see Anderson, 1970,1971,1974) can be viewed as a program of fitting 
additive and averaging models to factorial data. The major differences from the 
techniques so far discussed appear to be that Anderson tends to treat the numerical 
responses as the scale to be used in testing a representation, that he uses analysis- 
of-variance techniques on these numbers to decide on the adequacy of the model, 
and that he usually uses averaging models. 

6.5.2 TESTING AXIOMS 

Although one may sometimes want or need the numerical representation, the 
scientific interest is often not in the resulting numbers but in whether we know the 
relevant independent factors that underlie the subject's behavior. In such cases, 
it is probably wiser to design studies directly aimed at testing particular axioms, 
such as independence, double cancellation, or one or another of the distributivity 
axioms. Krantz (1972, 1974) makes a strong case for this approach, giving a num- 
ber of illustrations. 

We consider studies that have focused on the independence property (which, 
it will be recalled, implies double cancellation when three or more factors are in- 
volved and solvability is satisfied). There is also a literature on transitivity, which 
we shall not go into here. Perhaps the best-studied example of independence is the 
property known as the extended sure-thing principle of expected utility theory: 
if (a, A, b) denotes a gamble in which a is the consequence if event A occurs and b 
is the consequence if 2 occurs, then the extended sure-thing principle (extended 
because a may itself be a gamble) is 

(a, A, b) 2 (a', A, b) iff (a, A, b') 2 (a', A,  b'). 

Ellsberg (1961) focused attention on this property by discussing instances in which 
reasonable people feel they would violate it. MacCrimmon (1968) reported about 
25 percent failure of the property among middle-rank business executives confronted 
with hypothetical business problems. Becker and Brownson (1974), using graduate 
students of business, found a violation rate of nearly 50 percent. MacCrimmon and 
Larsson (In press) give a careful analysis of the problem and report an extensive 
empirical study in which, again, a substantial proportion of the subjects violate 
the extended sure-thing principle. It should be realized how sweeping this con- 
clusion is: it not only rejects the SEU model but also invalidates any form of 
monotonic decomposition that says preferences can be expressed in the form 

where F is strictly increasing in each argument. 
The full significance of this for the study of choices under uncertainty seems not 

to have been fully appreciated. For example, a number of studies attacking SEU 
(Slovic and Lichtenstein, 1968; Payne, 1973a,b; Payne and Braunstein, 1971) 
have proposed various alternative models that are decomposable and, hence, are 
inconsistent with the empirical results cited above. 

C.H. Coombs and his students have taken the failures of SEU seriously and have 
proposed that our preferences for uncertain situations are heavily influenced by a 
concept of risk. In an attempt to gain some understanding of how various aspects 
of a gamble affect risk, they have manipulated three factors of gambles and 
attempted to decide among the four simple polynomial models using the proce- 
dures of Krantz and Tversky (1971). Coombs and Huang (1970) showed that only 
the distributive model was supported. Later, however, Coombs and Bowen (1971), 



using closely related gambles in which the odds were changed without varying 
either the expected value or variance, showed that risk varied with the odds. This 
rejected not only an axiomatization of risk published by Pollatsek and Tversky 
(1970) but also the distributive model. The cause of this inconsistency is not 
known. 

Tversky and Krantz (1969) did a three-factor study of schematic faces that were 
varied as follows: long versus wide faces, open versus solid eyes, and straight versus 
curved mouths. Subjects judged comparative similarities of pairs. Tests of inde- 
pendence were well supported in this case. 

A body of literature, typified by the work of Phillips and Edwards (1966) and 
Edwards (1968), has focused on how well Bayes' theorem describes human 
probabilistic information processing. If we let no denote the prior odds of two 
hypotheses, HI and H2 ; a, the posterior odds after observing n sources of infor- 
mation; and L the likelihood ratio of these data having arisen under the two hy- 
potheses, we have from Bayes' theorem the additive representation 

Wallsten (1972) pointed out that in order to  understand how the information is 
being assimilated, it may be useful to regard this as a conjoint measurement prob- 
lem in the subjects' responses. He reported an experiment in which the probability 
of the data conditional on each hypothesis, P(D IH,), and the number n of indepen- 
dent observations were varied. Using the procedures of assessing three-factor simple 
polynomial models outlined by Krantz and Tversky (1971), the distributive model 

$3 (n) [$I (D HI ) - $2 (DIH2 )I 
was sustained for 8 of 12 subjects. A number of substantive interpretations are 
made from the calculated functions. Wallsten [In press (a, b)] and Wallsten and 
Sapp (In press) have followed up this work. 

6.6 ERROR 

In any attempt either to test or to fit a measurement model to  data, a major diffi- 
culty is error. Everyone is confident that there is some element of inconsistency 
in subjects' responses. We know that if we embed a choice in a long series of choices, 
we do not necessarily get the same response each time it is presented. Whether this 
is due to  fatigue, to changes in attitude resulting from previous choices, or to  other 
sources of variability, we cannot be sure. But whatever the causes, it is clearly 
inappropriate to demand exact fits of the model to data or to reject an axiom 
every time an apparent failure occurs. 

Although we have been well aware of these difficulties from the first tests of 
SEU - e.g., those of Mosteller and Nogee (195 1) - it is surprising how little has 
been done to rectify them. Some probabilistic work on transitivity has been done, 

and some probabilistic choice models have been developed, but within the context 
of either concatenation measurement structures or conjoint ones, little has been 
done. The most significant breakthrough is the work of Falmagne (1976); it was 
motivated by the study of hve l t  et al. (1972) and the difficulty they had in 
taking into account the statistical nature of the data. 

Falmagne assumes that when a subject is asked to solve an equation of the 
form 

(a. P) " (b, q) 

for, let us say, b (e.g., these are intensities to the left and right ears and the judg- 
ment is equal loudness), then b is really a random variable o,,,(a). He then supposes 
that the appropriate additive representation is comparable to the andysis-of- 
variance models, namely, 

where Fp',,(a) is a random variable with 0 median. 
The key property used in the analysis is that if X is a random variable, @ a 

strictly increasing function, and M the median operator, then 

i.e., M and @ commute. Then, writing 

he proves from the representation that the following cancellation property must 
hold: 

m,,(a) = m,, [m,r(a)l 9 

which corresponds to the double cancellation property. A second property, corre- 
sponding to transitivity, is commutativity: 

Falmagne shows that if we define 2 on A x P by 

(a, P) 2 (b, q)  iff m,, (a) 2 b 

and assume that A and P are reai intervals, that m is strictly increasing, and that 
m satisfies the cancellation and commutativity properties, then 2 is a weak order 
that satisfies double cancellation (and so independence because of solvability). 

He then outlines methods of testing these two properties using median tests. 
So far, only pilot data for loudness summation have been published (Falmagne, 
1976); they indicate small but systematic failures in the cancellation property, 
suggesting that additivity may not hold strictly. It is, however, much too early to  
be sure. Additional data will soon be reported. 



6.7 CONCLUSIONS 

It is reasonably clear that the simplest, best-known case of conjoint measurement, 
the additive representation, has limited direct application to human decision pro- 
cesses (section 6.5). Its main value is, first, in understanding more clearly the 
basic measurement structures of physics (sections 6.4.3 and 6.4.4), with the 
hope of eventually generalizing that structure to include behavioral and social 
science variables, and second, in providing a tool for analyzing the structure and 
representation of more complex conjoint structures. Examples of the latter are 
the study of certain nonadditive representations (section 6.3) and of conditiond 
expected utility (section 6.4.2), which is of interest to decision analysts, economists, 
and statisticians. One can, therefore, anticipate considerable future work on the 
development and empirical testing of somewhat special, but still interesting, non- 
additive representations. Experimental tests will continue to be somewhat frustra- 
ting until an adequate theory of error is evolved (section 6.6). 
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